نویسندگان

1 دانشگاه صنعتی شریف

2 انستیتو پاستور ایران

چکیده

در حال حاضر شل شدگی و لقی کاشتنی­های استخوانی و عفونت عمیق اطراف آن به دلیل رشد و تکثیر میکروب­ها بر روی سطح آن­ها، دو دلیل اصلی شکست کاشتنی­های استخوانی است. لق شدگی اغلب به دلایل: 1- عدم اتصال مناسب کاشتنی و استخوان و ایجاد جابجایی­های خیلی کوچک در مواقع بارگذاری 2- عدم رشد مناسب سلول­های استخوانی در فصل مشترک کاشتنی- استخوان 3- چسبندگی ضعیف سلول­های استخوانی به کاشتنی رخ می­دهد. عفونت عمیق اطراف کاشتنی اغلب به دلیل هجوم میکروب­ها به محل کاشتنی و تشکیل بیوفیلم بر روی سطح کاشتنی رخ می­دهد. در این مقاله، انواع نانوپوشش­های برطرف کننده مشکلات کاشتنی­ها مورد بحث قرار گرفته و نهایتا جهت­گیری پژوهش­ها در آینده مشخص شده است. استفاده از پوشش­های حاصل از بیومولکول­های حاوی فاکتورهای رشد استخوانی (BMPs) و پوشش­هایی با قابلیت رهایش کنترل شده دارو از جمله فناوری­های جدیدی هستند که در این زمینه در حال توسعه هستند. پیش­ بینی می­شود آینده متعلق به نانو پوشش­هایی خواهد بود که قابلیت کنترل لق شدگی و درمان موضعی عفونت را همزمان محقق کنند.

کلیدواژه‌ها

عنوان مقاله [English]

Causes of Bone Implant Failure and Solutions Based on Technology of Coatings

نویسندگان [English]

  • V Zarghami 1
  • M Ghorbani 1
  • MA Shokrgozar 2
  • K P Bagheri 2

1

2

چکیده [English]

Abstract
The main causes of bone implant failure are infection and formation of biofilm on the surface of bone implants and increased resistance to antibiotics, lack of proper implant-bone interaction, very small displacements during loading and aseptic loosening. In the present review, we discuss different types of coatings to eliminate these problems and also explain the future research directions. Application of coatings resulting from bone morphogenetic proteins (BMPs) and coatings with the ability of controlled drug release are among new technologies developed in this field. It is predicted that future belongs to coatings that are capable of topically treating infection, controling aseptic loosening, and resolving the lack of interaction.
 

کلیدواژه‌ها [English]

  • Keywords: Bone Implants
  • Aseptic Loosening
  • Lack of Interaction
  • Infection
  • Coatings
 
1- Faulkner A, Kennedy LG, Baxter K, Donovan J, Wilkinson M, Bevan G. Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model, Health Technol Assess. 1998;2:1.
2- Kane RL, Saleh KJ, Wilt TJ, Bershadsky B, Cross WW 3rd, MacDonald RM, Rutks I.Total knee replacement. Evid Rep Technol Assess (Summ). 2003;86:1.
3-Flugsrud GB, Nordsletten L, Espehaug B, Havelin LI, Meyer HE. Risk factors for total hip replacement due to primary osteoarthritis: a cohort study in 50,034 persons. Arthritis & Rheumatism. 2002;46: 675.
4- Harms S, Larson R, Sahmoun AE, Beal JR. Obesity increases the likelihood of total joint replacement surgery among younger adults. International orthopaedics. 2007;31: 23.
5- Gwam CU, Mistry JB, Mohamed NS, Thomas M, Bigart KC, Mont MA, Delanois RE. Current epidemiology of revision total hip arthroplasty in the United States: National Inpatient Sample 2009 to 2013. The Journal of arthroplasty. 2017;32:2088.
6- Gundtoft PH, Varnum C, Pedersen AB, Overgaard S. The danish hip arthroplasty register. Clinical epidemiology. 2016;8:509.
7- Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progressin inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine: Nanotechnology, Biology and Medicine 2011;7:22.
8- Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006;27:2331.
9- Widmer AF. New developments in diagnosis and treatment of infection in orthopedic implants. Clinical Infectious Diseases, 2001;33: S94.
10- Pérez-Prieto D, Portillo ME, Puig-Verdié L, Alier A, Martínez S, Sorlí L, Horcajada JP, Monllau JC. C-reactive protein may misdiagnose prosthetic joint infections, particularly chronic and low-grade infections. International orthopaedics. 2017;41:1315.
11- Maderazo EG, Judson SU, Pasternak HE. Late infections of total joint prostheses. A review and recommendations for prevention. Clinical orthopaedics and related research. 1988; 229:131.
12- Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev.. 2000;64:847.
13- Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588.
14-Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections Ann N Y Acad Sci 2011;1241:104.
15- Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. Journal of Controlled Release 2008;130:202.
16- Neoh KG, Hu X, Zheng D, Kang ET. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials. 2012;33:2813.
17- Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent attachment of poly (ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir. 2003;19:6912.
18- Shi Z, Neoh KG, Kang ET, Poh C, Wang W. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Engineering Part A. 2008;15:417.
19- Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29:4751.
20- Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34:3174.
21- Li Y, Xiong W, Zhang C, Gao B, Guan, Cheng H, et al., Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotubecoated titanium substrates: in vitro and in vivo studies, J. Biomed. Mater. Res. A 2014;102:3939.
22- Yang CC, Lin CC, Liao JW, Yen SK. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Materials Science and Engineering: C 2013;33:2203.
23- Cao H, Qiao Y, Liu X, Lu T, Cui T, Meng F, et al., Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better, Acta Biomater. 2013; 9: 5100.
24- Prashanth KVH, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential- an overview. Trends in Food Science & Technology 2007;18:117.
25- Hafdani FN, Sadeghinia N. A Review on application of chitosan as a natural antimicrobial. World Academy of Science, Engineering and Technology 2011;74:257.
26- Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers 2009;76:167.
27- Dash M, Chiellini F, Ottenbrite RMM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science 2011;36:981.
28- Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres asa potential carrier for drugs. International journal of pharmaceutics 2004;274:1.
29- Di Martino A, Sittinger M, Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26:5983.
30- Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, et al. Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers 2010;79:284.
31- Ketonis C, Parvizi J, Adams C, Shapiro I, Hickok N. Topographic features retained after antibiotic modification of Ti alloy surfaces: retention of topography with attachment of antibiotics. Clin Orthop Relat Res 2009;467:1678.
32- Das R, Pal TK, Nandy BC, Duttagupta S. Development of method of analysis for estimating the Vancomycin in blood plasma by RP-HPLC method: Application to in vivo Studies. Der Pharmacia Lettrer 2010; 2:201.
33- Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology. 2006 ;24:1551.
34- Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011 Jun 1;32(16):3899-909.
35- Kazemzadeh-Narbat M, Lai BF, Ding C, Kizhakkedathu JN, Hancock RE, Wang R. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials. 2013;34:5969.
36- de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PH. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science translational medicine. 2018;10:eaan4044.
37- Sundfeldt M, V Carlsson L, B Johansson C, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta orthopaedica. 2006;77:177.
38- Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clinical orthopaedics and related research. 1992;276:7.
39- Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651.
40- Fournier E, Devaney R, Palmer M, Kramer J, El Khaja R, Fonte M. Superelastic orthopedic implant coatings. Journal of materials engineering and performance. 2014;23:2464.
41- Kawamura H, Dunbar MJ, Murray P, Bourne RB, Rorabeck CH. The porous coated anatomic total hip replacement: a ten to fourteen-year follow-up study of a cementless total hip arthroplasty. JBJS. 2001;83:1333.
42- Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European spine journal. 2001;10:S96.
43- Jones J R. Review of bioactive glass: From Hench to Hybrids. Acta Biomater 2015;23:S53.
44- Rezwan K, Chen QZ, Blaker JJ, Roberto A, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413.
45- Hoppe A, Gudal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32:2757.
46- G.A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater. 2012;8:3144.
 47- 38- M. Kazemzadeh-Narbat, S. Noordin, B.A. Masri, D.S. Garbuz, C.P. Duncan, R.E. Hancock, et al., Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium, J. Biomed. Mater. Res. B Appl. Biomater. 2012;100:1344.
48- Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release. 2014;173:75.
49- Shang L, Qi Y, Lu H, Pei H, Li Y, Qu L, Wu Z, Zhang W. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. InTheranostic Bionanomaterials 2019;165.
50- Ordikhani F, Farani MR, Dehghani M, Tamjid E, Simchi A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84:91.
51- Palla-Rubio B, Araújo-Gomes N, Fernández-Gutiérrez M, Rojo L, Suay J, Gurruchaga M, Goñi I. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydrate polymers. 2019;203:331.
52- Ordikhani F, Dehghani M, Simchi A. Antibiotic-loaded chitosan–laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies. Journal of Materials Science: Materials in Medicine. 2015 Dec 1;26(12):269.
53- Khunawattanakul W, Puttipipatkhachorn S, Rades T, Pongjanyakul T. Chitosan–magnesium aluminum silicate nanocomposite films: Physicochemical characterization and drug permeability. InternationalJournalofPharmaceutics 2010;393:219.
54- Wang Q, Zhang J, Wang A. Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface Science 2013;287:54.
55- Gaharwar AK, Rivera CP, Wu C-J, Schmidt G. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia 2011;7:4139.
56- Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G. Assessment of using Laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomaterialia 2011;7:568.
57- MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL. Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials. 2004;25:3135.
58- Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, Liao Y, Hu J. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2010;31:9006.
59- Tu J, Yu M, Lu Y, Cheng K, Weng W, Lin J, Wang H, Du P, Han G. Preparation and antibiotic drug release of mineralized collagen coatings on titanium, J. Mater. Sci. Mater. Med. 2012;23;2413.
60- Bronk JK, Russell BH, Rivera JJ, Pasqualini R, Arap W, Höök M, Barbu EM. A multifunctional streptococcal collagen-mimetic protein coating prevents bacterial adhesion and promotes osteoid formation on titanium. Acta biomaterialia. 2014 ;10:3354.
61- Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). Journal of tissue engineering and regenerative medicine. 2008;2:81.
62- D.W. Lee, Y.P. Yun, K. Park, S.E. Kim, Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration, Bone 2012;50:974.
63- S. Zwingenberger, Z. Yao, A. Jacobi, C. Vater, R.D. Valladares, C. Li, et al., Enhancement of BMP-2 induced bone regeneration by SDF-1alpha mediated stem cell recruitment, Tissue Eng. Part A  2014;20:810.
64- Helena N Chia and Benjamin M Wu, Recent advances in 3D printing of biomaterials, Journal of Biological Engineering 2015;9:4.
65- Yu M, You D, Zhuang J, Lin S, Dong L, Weng S, Zhang B, Cheng K, Weng W, Wang H. Controlled release of naringin in metal-organic framework-loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity. ACS applied materials & interfaces. 2017;9:19698.
66- Knopf-Marques H, Barthes J, Lachaal S, Mutschler A, Muller C, Dufour F, Rabineau M, Courtial EJ, Bystroňová J, Marquette C, Lavalle P. Multifunctional polymeric implant coatings based on gelatin, hyaluronic acid derivative and chain length-controlled poly (arginine). Materials Science and Engineering: C. 2019;104:109898.
 
 
1- Faulkner A, Kennedy LG, Baxter K, Donovan J, Wilkinson M, Bevan G. Effectiveness of hip prostheses in primary total hip replacement: a critical review of evidence and an economic model, Health Technol Assess. 1998;2:1.
2- Kane RL, Saleh KJ, Wilt TJ, Bershadsky B, Cross WW 3rd, MacDonald RM, Rutks I.Total knee replacement. Evid Rep Technol Assess (Summ). 2003;86:1.
3-Flugsrud GB, Nordsletten L, Espehaug B, Havelin LI, Meyer HE. Risk factors for total hip replacement due to primary osteoarthritis: a cohort study in 50,034 persons. Arthritis & Rheumatism. 2002;46: 675.
4- Harms S, Larson R, Sahmoun AE, Beal JR. Obesity increases the likelihood of total joint replacement surgery among younger adults. International orthopaedics. 2007;31: 23.
5- Gwam CU, Mistry JB, Mohamed NS, Thomas M, Bigart KC, Mont MA, Delanois RE. Current epidemiology of revision total hip arthroplasty in the United States: National Inpatient Sample 2009 to 2013. The Journal of arthroplasty. 2017;32:2088.
6- Gundtoft PH, Varnum C, Pedersen AB, Overgaard S. The danish hip arthroplasty register. Clinical epidemiology. 2016;8:509.
7- Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progressin inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine: Nanotechnology, Biology and Medicine 2011;7:22.
8- Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 2006;27:2331.
9- Widmer AF. New developments in diagnosis and treatment of infection in orthopedic implants. Clinical Infectious Diseases, 2001;33: S94.
10- Pérez-Prieto D, Portillo ME, Puig-Verdié L, Alier A, Martínez S, Sorlí L, Horcajada JP, Monllau JC. C-reactive protein may misdiagnose prosthetic joint infections, particularly chronic and low-grade infections. International orthopaedics. 2017;41:1315.
11- Maderazo EG, Judson SU, Pasternak HE. Late infections of total joint prostheses. A review and recommendations for prevention. Clinical orthopaedics and related research. 1988; 229:131.
12- Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev.. 2000;64:847.
13- Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588.
14-Kiedrowski MR, Horswill AR. New approaches for treating staphylococcal biofilm infections Ann N Y Acad Sci 2011;1241:104.
15- Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. Journal of Controlled Release 2008;130:202.
16- Neoh KG, Hu X, Zheng D, Kang ET. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials. 2012;33:2813.
17- Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L. Covalent attachment of poly (ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir. 2003;19:6912.
18- Shi Z, Neoh KG, Kang ET, Poh C, Wang W. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Engineering Part A. 2008;15:417.
19- Zhang F, Zhang Z, Zhu X, Kang ET, Neoh KG. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials. 2008;29:4751.
20- Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013; 34:3174.
21- Li Y, Xiong W, Zhang C, Gao B, Guan, Cheng H, et al., Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotubecoated titanium substrates: in vitro and in vivo studies, J. Biomed. Mater. Res. A 2014;102:3939.
22- Yang CC, Lin CC, Liao JW, Yen SK. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Materials Science and Engineering: C 2013;33:2203.
23- Cao H, Qiao Y, Liu X, Lu T, Cui T, Meng F, et al., Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better, Acta Biomater. 2013; 9: 5100.
24- Prashanth KVH, Tharanathan RN. Chitin/chitosan: modifications and their unlimited application potential- an overview. Trends in Food Science & Technology 2007;18:117.
25- Hafdani FN, Sadeghinia N. A Review on application of chitosan as a natural antimicrobial. World Academy of Science, Engineering and Technology 2011;74:257.
26- Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers 2009;76:167.
27- Dash M, Chiellini F, Ottenbrite RMM, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science 2011;36:981.
28- Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres asa potential carrier for drugs. International journal of pharmaceutics 2004;274:1.
29- Di Martino A, Sittinger M, Risbud MV. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005;26:5983.
30- Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, et al. Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers 2010;79:284.
31- Ketonis C, Parvizi J, Adams C, Shapiro I, Hickok N. Topographic features retained after antibiotic modification of Ti alloy surfaces: retention of topography with attachment of antibiotics. Clin Orthop Relat Res 2009;467:1678.
32- Das R, Pal TK, Nandy BC, Duttagupta S. Development of method of analysis for estimating the Vancomycin in blood plasma by RP-HPLC method: Application to in vivo Studies. Der Pharmacia Lettrer 2010; 2:201.
33- Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology. 2006 ;24:1551.
34- Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials. 2011 Jun 1;32(16):3899-909.
35- Kazemzadeh-Narbat M, Lai BF, Ding C, Kizhakkedathu JN, Hancock RE, Wang R. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials. 2013;34:5969.
36- de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PH. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science translational medicine. 2018;10:eaan4044.
37- Sundfeldt M, V Carlsson L, B Johansson C, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: a review of different theories. Acta orthopaedica. 2006;77:177.
38- Amstutz HC, Campbell P, Kossovsky N, Clarke IC. Mechanism and clinical significance of wear debris-induced osteolysis. Clinical orthopaedics and related research. 1992;276:7.
39- Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651.
40- Fournier E, Devaney R, Palmer M, Kramer J, El Khaja R, Fonte M. Superelastic orthopedic implant coatings. Journal of materials engineering and performance. 2014;23:2464.
41- Kawamura H, Dunbar MJ, Murray P, Bourne RB, Rorabeck CH. The porous coated anatomic total hip replacement: a ten to fourteen-year follow-up study of a cementless total hip arthroplasty. JBJS. 2001;83:1333.
42- Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European spine journal. 2001;10:S96.
43- Jones J R. Review of bioactive glass: From Hench to Hybrids. Acta Biomater 2015;23:S53.
44- Rezwan K, Chen QZ, Blaker JJ, Roberto A, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413.
45- Hoppe A, Gudal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011;32:2757.
46- G.A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater. 2012;8:3144.
 47- 38- M. Kazemzadeh-Narbat, S. Noordin, B.A. Masri, D.S. Garbuz, C.P. Duncan, R.E. Hancock, et al., Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium, J. Biomed. Mater. Res. B Appl. Biomater. 2012;100:1344.
48- Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release. 2014;173:75.
49- Shang L, Qi Y, Lu H, Pei H, Li Y, Qu L, Wu Z, Zhang W. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. InTheranostic Bionanomaterials 2019;165.
50- Ordikhani F, Farani MR, Dehghani M, Tamjid E, Simchi A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84:91.
51- Palla-Rubio B, Araújo-Gomes N, Fernández-Gutiérrez M, Rojo L, Suay J, Gurruchaga M, Goñi I. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants. Carbohydrate polymers. 2019;203:331.
52- Ordikhani F, Dehghani M, Simchi A. Antibiotic-loaded chitosan–laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies. Journal of Materials Science: Materials in Medicine. 2015 Dec 1;26(12):269.
53- Khunawattanakul W, Puttipipatkhachorn S, Rades T, Pongjanyakul T. Chitosan–magnesium aluminum silicate nanocomposite films: Physicochemical characterization and drug permeability. InternationalJournalofPharmaceutics 2010;393:219.
54- Wang Q, Zhang J, Wang A. Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface Science 2013;287:54.
55- Gaharwar AK, Rivera CP, Wu C-J, Schmidt G. Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomaterialia 2011;7:4139.
56- Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G. Assessment of using Laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomaterialia 2011;7:568.
57- MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL. Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials. 2004;25:3135.
58- Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, Liao Y, Hu J. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2010;31:9006.
59- Tu J, Yu M, Lu Y, Cheng K, Weng W, Lin J, Wang H, Du P, Han G. Preparation and antibiotic drug release of mineralized collagen coatings on titanium, J. Mater. Sci. Mater. Med. 2012;23;2413.
60- Bronk JK, Russell BH, Rivera JJ, Pasqualini R, Arap W, Höök M, Barbu EM. A multifunctional streptococcal collagen-mimetic protein coating prevents bacterial adhesion and promotes osteoid formation on titanium. Acta biomaterialia. 2014 ;10:3354.
61- Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). Journal of tissue engineering and regenerative medicine. 2008;2:81.
62- D.W. Lee, Y.P. Yun, K. Park, S.E. Kim, Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration, Bone 2012;50:974.
63- S. Zwingenberger, Z. Yao, A. Jacobi, C. Vater, R.D. Valladares, C. Li, et al., Enhancement of BMP-2 induced bone regeneration by SDF-1alpha mediated stem cell recruitment, Tissue Eng. Part A  2014;20:810.
64- Helena N Chia and Benjamin M Wu, Recent advances in 3D printing of biomaterials, Journal of Biological Engineering 2015;9:4.
65- Yu M, You D, Zhuang J, Lin S, Dong L, Weng S, Zhang B, Cheng K, Weng W, Wang H. Controlled release of naringin in metal-organic framework-loaded mineralized collagen coating to simultaneously enhance osseointegration and antibacterial activity. ACS applied materials & interfaces. 2017;9:19698.
66- Knopf-Marques H, Barthes J, Lachaal S, Mutschler A, Muller C, Dufour F, Rabineau M, Courtial EJ, Bystroňová J, Marquette C, Lavalle P. Multifunctional polymeric implant coatings based on gelatin, hyaluronic acid derivative and chain length-controlled poly (arginine). Materials Science and Engineering: C. 2019;104:109898