نوع مقاله : مروری

نویسندگان

1 دانشگاه صنعتی شریف

2 پژوهشکده علوم و فناوری نانو دانشگاه صنعتی شریف

3 استاد تمام بانک سلولی ایران- انستیتو پاستور ایران

چکیده

مقدمه
یکی از مسائلی که در ارتباط با تحریک و تسریع بازسازی استخوان و ترمیم شکستگی­های استخوانی وجود دارد، استفاده و تنظیم عملکرد سیستم ایمنی بدن در راستای استخوان سازی سریع و بهبود عیوب است که تحت عنوان استئوایمونولوژی شناخته می­شود.
مواد و روشها:
در این مقاله مروری، با بررسی 57 مقاله از منابع direct science ,pupmed روش مواجه سیستم ایمنی بدن هنگام بروز شکستگی­های استخوانی بررسی شده است.
 نتایج:
 مواد بیولوژیکی از قبیل فاکتور نکروز توموری آلفا (TNF-α)، لیپوپلی ساکارید (LPS)، پروتئین اینترلوکین 17 (IL-17)، لیپوتیکوئیک اسید (LTA)  به عنوان مواد دارای خاصیت تنظیم کننده سیستم ایمنی معرفی شد که قابلیت بهبود فرایند استخوان سازی و ترمیم سریع تر از طریق تحریک سیستم ایمنی را دارا هستند.
نتیجه گیری:
جهت گیری پژوهشهای آینده، در خصوص پیدایش ترکیبات درمانی جدید حاصل از مواد استخوان ساز از قبیل فاکتورهای رشد استخوانی و مواد تنظیم کننده رفتار سیستم ایمنی بدن در راستای بازسازی استخوان پیش بینی شد.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Stimulate and accelerate bone regeneration and repair bone fractures using biomaterials regulating the immune system:

نویسندگان [English]

  • V Zarghami 1
  • Fereshteh Mohrram zadeh 2
  • Mohammad Ali Shokr gozar 3

2 Sharif University of Technology Research Institute of Nanotechnology

3 Iran Cell Bank - Pasteur Institute of Iran

چکیده [English]

Introduction
One of the issues related to stimulating and accelerating bone regeneration and repairing bone fractures is the role of the immune system in healing of fractures, known as osteo-immunology.
Method:
In this review 57 article of sciencedirect and pumped database is investigated for potential role and mechanism of the immune system's response to bone fractures.
 Results:
 biological materials such as tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), interleukin-17 (IL-17) protein, lipotic Acid (LTA) could regulates the immune system, which have the ability to improve the ossification process and faster healing.
Conclusion:
The direction of future research was also predicted regarding the emergence of new therapeutic compounds derived from bone-building materials such as bone growth factors and substances that regulate the behavior of the immune system in order to regenerate bone.
 

کلیدواژه‌ها [English]

  • Keywords: Biocompatible Materials
  •  Bone Regeneration
  • Immunomodulatory
  • Osteogenesis
 
1-Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011 Jun 1;42(6):551-5.
2- Klein-Nulend J, Bacabac RG, Bakker AD. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012 Sep 24;24(2):279-91.
3- Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix biology. 2003 Mar 1;22(1):81-91.
4- Schlundt C, Schell H, Goodman SB, Vunjak-Novakovic G, Duda GN, Schmidt-Bleek K. Immune modulation as a therapeutic strategy in bone regeneration. Journal of experimental orthopaedics. 2015 Dec;2(1):1-0.
5- Mountziaris PM, Mikos AG. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering Part B: Reviews. 2008 Jun 1;14(2):179-86.
6- Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A, Hwang YS. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Engineering Part B: Reviews. 2012 Jun 1;18(3):235-44.
7- Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. Journal of Orthopaedic Research®. 2019 Jan;37(1):35-50.
8- Marks Jr SC, Odgren PR. Structure and development of the skeleton. InPrinciples of bone biology 2002 Jan 1 (pp. 3-15). Academic press.
9- Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocrine reviews. 2008 Jun 1;29(4):403-40.
10-Takayanagi H. New developments in osteoimmunology. Nature Reviews Rheumatology. 2012 Nov;8(11):684.
11- Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nature Reviews Rheumatology. 2015 Jan;11(1):45.
12- Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW. Assessment of compromised fracture healing. JAAOS-Journal of the American Academy of Orthopaedic Surgeons. 2012 May 1;20(5):273-82.
13- Garcia P, Histing T, Holstein JH, Klein M, Laschke MW, Matthys R, Ignatius A, Wildemann B, Lienau J, Peters A, Willie B. Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur Cell Mater. 2013 Jul 16;26(1):12.
14- Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. Journal of orthopaedic trauma. 2010 Mar 1;24:S36-40.
15- Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European spine journal. 2001 Oct;10(2):S96-101.
16- Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015 Jan 1;70:19-27.
17- Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive materials. 2017 Dec 1;2(4):224-47.
18- Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomaterials research. 2019 Dec;23(1):1-1.
19- Jones JR. Review of bioactive glass: from Hench to hybrids. Actabiomaterialia. 2013 Jan 1;9(1):4457-86.
20- Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. International journal of biological macromolecules. 2020 May 15;151:1224-39.
21- Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L, Theilgaard N, van Blitterswijk CA. Comparative in vivo study of six hydroxyapatite‐based bone graft substitutes. Journal of Orthopaedic Research. 2008 Oct;26(10):1363-70.
22- Kinaci A, Neuhaus V, Ring DC. Trends in bone graft use in the United States. Orthopedics. 2014 Aug 1;37(9):e783-8.
23- Parikh SN. Bone graft substitutes: past, present, future. Journal of postgraduate medicine. 2002 Apr 1;48(2):142.
24- Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Materials Science and Engineering: C. 2020 Jul 1;112:110893.
25- Xu GP, Zhang XF, Sun L, Chen EM. Current and future uses of skeletal stem cells for bone regeneration. World journal of stem cells. 2020 May 26;12(5):339.
26- Fayaz HC, Giannoudis PV, Vrahas MS, Smith RM, Moran C, Pape HC, Krettek C, Jupiter JB. The role of stem cells in fracture healing and nonunion. International orthopaedics. 2011 Nov;35(11):1587-97.
27- Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. International orthopaedics. 2013 Dec;37(12):2491-8.
28- Caplan AI, Correa D. The MSC: an injury drugstore. Cell stem cell. 2011 Jul 8;9(1):11-5.
29- Yun YR, Jang JH, Jeon E, Kang W, Lee S, Won JE, Kim HW, Wall I. Administration of growth factors for bone regeneration. Regenerative medicine. 2012 May;7(3):369-85.
30- Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone: biology and clinical applications. JBJS. 2002 Jun 1;84(6):1032-44.
31- Gothard D, Smith EL, Kanczler JM, Rashidi H, Qutachi O, Henstock JR, Rotherham M, El Haj AJ, Shakesheff KM, Oreffo RO. Tissue engineered bone using select growth factors: A comprehensive review of animal studies and clinical translation studies in man. European cells & materials. 2014 Oct 6.
.
32- Carbone EJ, Rajpura K, Jiang T, Laurencin CT, Lo KW. Regulation of bone regeneration with approved small molecule compounds. Advances in Regenerative Biology. 2014 Sep 25;1(1):25276.
33- Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology. 2012 Mar;8(3):133-43.
34- Pountos I, Walters G, Panteli M, Einhorn TA, Giannoudis PV. Inflammatory profile and osteogenic potential of fracture haematoma in humans. Journal of clinical medicine. 2020 Jan;9(1):47.
35- Mizuno K, Mineo KA, Tachibana TO, Sumi MA, Matsubara TS, Hirohata KA. The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. The Journal of bone and joint surgery. British volume. 1990 Sep;72(5):822-9.
36- Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nature Reviews Immunology. 2015 Feb;15(2):117-29.
37- Charles JF, Nakamura MC. Bone and the innate immune system. Current osteoporosis reports. 2014 Mar;12(1):1-8.38-
38- Alexander KA, Chang MK, Maylin ER, Kohler T, Müller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. Journal of Bone and Mineral Research. 2011 Jul;26(7):1517-32.
39- Kovtun A, Bergdolt S, Wiegner R, Radermacher P, Huber-Lang M, Ignatius A. The crucial role of neutrophil granulocytes in bone fracture healing. Eur Cell Mater. 2016 Jul 25;32:152-62.
40- Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, van Rooijen N, Radbruch A, Lucius R, Hartmann S, Duda GN. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone. 2018 Jan 1;106:78-89.
41- Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone. Journal of Bone and Mineral Research. 2015 Dec;30(12):2140-9.
42- Nucera S, Biziato D, De Palma M. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. The International journal of developmental biology. 2011;55(ARTICLE):495-503.
43-Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, Berreur M, Rédini F, Heymann D, Layrolle P, Blanchard F. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. The American journal of pathology. 2015 Mar 1;185(3):765-75.
44-Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Engineering Part B: Reviews. 2011 Dec 1;17(6):393-402.
45- Schmidt-Bleek K, Kwee BJ, Mooney DJ, Duda GN. Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis. Tissue Engineering Part B: Reviews. 2015 Aug 1;21(4):354-64.
46- Madaro L, Bouché M. From innate to adaptive immune response in muscular dystrophies and skeletal muscle regeneration: the role of lymphocytes. BioMed research international. 2014 Oct;2014.
47- Kan L, Liu Y, McGuire TL, Berger DM, Awatramani RB, Dymecki SM, Kessler JA. Dysregulation of local stem/progenitor cells as a common cellular mechanism for heterotopic ossification. Stem cells. 2009 Jan;27(1):150-6.
48- El Khassawna T, Serra A, Bucher CH, Petersen A, Schlundt C, Könnecke I, Malhan D, Wendler S, Schell H, Volk HD, Schmidt-Bleek K. T lymphocytes influence the mineralization process of bone. Frontiers in immunology. 2017 May 24;8:562.
49-Idriss HT, Naismith JH. TNFα and the TNF receptor superfamily: Structure‐function relationship (s). Microscopy research and technique. 2000 Aug 1;50(3):184-95.
50- Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone. 2015 Sep 1;78:87-93.
51-Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018 Aug;8(1).
52-Reikerås O, Shegarfi H, Wang JE, Utvåg SE. Lipopolysaccharide impairs fracture healing: an experimental study in rats. Actaorthopaedica. 2005 Jan 1;76(6):749-53.
53-Zenobia C, Hajishengallis G. Basic biology and role of interleukin‐17 in immunity and inflammation. Periodontology 2000. 2015 Oct;69(1):142-59.
54- Ono T, Okamoto K, Nakashima T, Nitta T, Hori S, Iwakura Y, Takayanagi H. IL-17-producing γδ T cells enhance bone regeneration. Nature communications. 2016 Mar 11;7(1):1-9.
55-Ginsburg I. Role of lipoteichoic acid in infection and inflammation. The Lancet infectious diseases. 2002 Mar 1;2(3):171-9.
56- Hu CC, Chang CH, Hsiao YM, Chang Y, Wu YY, Ueng SW, Chen MF. Lipoteichoic Acid Accelerates Bone Healing by Enhancing Osteoblast Differentiation and Inhibiting Osteoclast Activation in a Mouse Model of Femoral Defects. International journal of molecular sciences. 2020 Jan;21(15):5550.
57- Fu Z, Wang X, Li B, Tang Y. Fraxinellone alleviates inflammation and promotes osteogenic differentiation in lipopolysaccharide-stimulated periodontal ligament stem cells by regulating the bone morphogenetic protein 2/Smad pathway. Archives of Oral Biology. 2021 Jan 1;121:104927.