نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای تخصصی گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار، گروه مهندسی پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر، تهران، ایران

4 دانشیار، مرکز تحقیقات استخوان و مفاصل، بیمارستان آموزشی درمانی چنگ گانگ، لینکو، تایوان

چکیده

پیش زمینه: عمل جراحی فیوژن ستون فقرات در سال‌های اخیر به‌عنوان یکی از رایج‌ترین درمان‌ها برای آسیب‌های ستون فقرات مطرح است. همچنین کیج‌های بین مهره‌ای که جایگزینی برای دیسک‌های بین مهره‌ای آسیب‌دیده در این عمل‌های جراحی هستند طی دهه‌های گذشته، دست‌خوش تغییرات گسترده‌ای در زمینه طراحی و مواد اولیه شده‌اند. این تغییرات از ساخت کیج‌های ساده تیتانیومی با روش‌های رایج ساخت و تولید تا کیج‌های شخصی‌سازی‌شده متخلخل تیتانیومی توسط تکنولوژی ساخت افزودنی یا کیج‌های پلیمری پوشش‌دهی‌شده با تیتانیوم، کاملاً قابل‌مشاهده است.
مواد و روش ها: در بین تمامی مواد اولیه که در ساخت کیج‌های بین مهره‌ای کاربرد دارد پلیمر پلی اتراتر کتون (PEEK) و فلز تیتانیوم، از رایج‌ترین مواد هستند. هرکدام از این دو ماده، مزایا و معایب خود را دارند و در مطالعات زیادی به مقایسه آنها پرداخته شده است. دو معیار نرخ فرونشست و نرخ جوش‌خوردگی معیارهای اصلی در مطالعات بالینی صورت‌گرفته برای مقایسه این دو نوع کیج می‌باشند.
یافته‌ها: در این بررسی سعی شده است با مرور جامع مطالعات کلینیکی چاپ شده در زمینه مقایسه دو کیج تیتانیومی و PEEK به جمع‌بندی و مقایسه جامع این دو نوع کیج پرداخته شود.
 نتیجه گیری: پس از بررسی مطالعات انجام شده مشخص گردید در رابطه با نرخ فرونشست، هر دو گروه نتایج نسبتاً مشابهی ارائه داده‌اند و برتری خاصی در هیچ‌کدام از کیج‌های تیتانیومی یا PEEK وجود ندارند اما کیج تیتانیومی در نرخ جوش‌خوردگی، نتایج بهتری ارائه کردند و در کلینیک درصد موفقیت بالاتری نسبت به کیج PEEK گزارش شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Comparison between Titanium and Polymer Interbody Cages in Spinal Fusion Surgery: A Review of Clinical Studies

نویسندگان [English]

  • Seyyed Mohammad Moein Fatemi 1
  • Mohammad Nikkhoo 2
  • Mostafa Rostami 3
  • Chih-Hsiu Cheng 4

1 PhD Student, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Assistant Professor, Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Associate Professor, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

4 Associate Professor, Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan

چکیده [English]

In recent years, spinal fusion surgery has become one of the most common treatments for spinal cord injuries, while the interbody cages, which replace the damaged interbody discs in the surgeries, have undergone extensive changes in design and material. These changes are quite visible, ranging from plain titanium cages made using the conventional manufacturing methods to customized porous titanium cages, which are made using additive manufacturing technology, or titanium-coated polymer cages. Among all the materials used in manufacturing the interbody cages, PolyEther Ether Ketone (PEEK) and titanium are the most common ones. Each of these two has its own advantages and disadvantages. Several studies have compared these two materials, mostly based on the two characteristics of subsidence and fusion rates. The present study performed a comprehensive review of the published clinical studies comparing the titanium and PEEK cages in order to make a comprehensive evaluation of these two. According to the reviewed studies, both materials had relatively similar results in subsidence rate, with no significant difference. However, it was shown that the titanium cages had a better fusion rate and subsequently were more likely to be successful in the clinical settings than the PEEK cages.

کلیدواژه‌ها [English]

  • Spine
  • Titanium
  • Spinal fusion
  • Total Disc Replacement
  • Polymers
  1. B. CR. Posterior lumbar interbody fusion updated. Clin Orthop Relat Res. 1985;193:16–9.
  2. Lin, P. M., Cautilli, R. A., & Joyce MF. Posterior lumbar interbody fusion. Clin Orthop Relat Res. 1983;180:154–68.
  3. Zhang D, Gao X, Jiang J, Shen Y, Ding W, Cui H. Safe placement of pedicle screw in lumbar spine with minimum three year follow-up: a case series and technical note. Int Orthop. 2018;42(3):567–73.
  4. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J spine Surg (Hong Kong). 2015;1(1):2–18.
  5. Matgé G. Cervical cage fusion with 5 different implants: 250 Cases. Acta Neurochir (Wien). 2002;144(6):539–50.
  6. Faldini C, Chehrassan M, Miscione MT, Acri F, D’Amato M, Pungetti C, et al. Single-level anterior cervical discectomy and interbody fusion using PEEK anatomical cervical cage and allograft bone. J Orthop Traumatol. 2011;12(4):201–5.
  7. Struwe C, Hermann PC, Bornemann R, Plöger M, Roessler PP, Strauss AC, et al. A novel PLIF PEEK interbody cage with an impactionless insertion technology: A case series with a mid-term follow up of three years. Technol Heal Care. 2017;25(5):949–57.
  8. El Masry MA, Khayal H, Salah H. Unilateral transforaminal lumbar interbody fusion (TLIF) using a single cage for treatment of low grade lytic spondylolisthesis. Acta Orthop Belg. 2008;74(5):667–71.
  9. de Kunder SL, van Kuijk SMJ, Rijkers K, Caelers IJMH, van Hemert WLW, de Bie RA, et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J [Internet]. 2017;17(11):1712–21. Available from: https://doi.org/10.1016/j.spinee.2017.06.018
  10. Wigfield CC, Nelson RJ. Nonautologous interbody fusion materials in cervical spine surgery: How strong is the evidence to justify their use? Spine (Phila Pa 1976). 2001;26(6):687–94.
  11. Rajaee SS, Bae HW, Kanim LEA, Delamarter RB. Spinal fusion in the United States: Analysis of trends from 1998 to 2008. Spine (Phila Pa 1976). 2012;37(1):67–76.
  12. Norton RP, Bianco K, Klifto C, Errico TJ, Bendo JA. Degenerative spondylolisthesis: An analysis of the nationwide inpatient sample database. Spine (Phila Pa 1976). 2015;40(15):1219–27.
  13. Brunette DM, Tengvall P, Textor M, Thomsen P. Titanium in Medicine [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001 [cited 2020 Oct 11]. (Engineering Materials). Available from: http://link.springer.com/10.1007/978-3-642-56486-4
  14. Van Noort R. Titanium: The implant material of today [Internet]. Vol. 22, Journal of Materials Science. Kluwer Academic Publishers; 1987 [cited 2020 Oct 11]. p. 3801–11. Available from: https://link.springer.com/article/10.1007/BF01133326
  15. Hwang SL, Hwang YF, Lieu AS, Lin CL, Kuo TH, Su YF, et al. Outcome analyses of interbody titanium cage fusion used in the anterior discectomy for cervical degenerative disc disease. J Spinal Disord Tech. 2005;18(4):326–31.
  16. Salame K, Ouaknine GER, Razon N, Rochkind S. The use of carbon fiber cages in anterior cervical interbody fusion: report of 100 cases. Neurosurg Focus. 2002;12(1):1–5.
  17. Chitnavis B, Barbagallo G, Selway R, Dardis R, Hussain A, Gullan R. Posterior lumbar interbody fusion for revision disc surgery: Review of 50 cases in which carbon fiber cages were implanted. J Neurosurg. 2001;95(2 SUPPL.):190–5.
  18. Krätzig T, Mende KC, Mohme M, Kniep H, Dreimann M, Stangenberg M, et al. Carbon fiber–reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging. Neurosurg Rev. 2020;
  19. Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee PC. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg. 2000;93(2 SUPPL.):259–65.
  20. Cho D, Liau W, Lee W, Al ET. Preliminary experience using a polyetheretherketone (PEEK) cage in the treatment of cervical disc disease. Neurosurgery. 2002;51(6):1343–50.
  21. Rohe SM, Engelhardt M, Harders A, Schmieder K. Anterior cervical discectomy and titanium cage fusion 7-year follow-up. Zentralbl Neurochir. 2009;70(4):180–6.
  22. Sugawara T, Itoh Y, Hirano Y, Higashiyama N, Mizoi K. Long term outcome and adjacent disc degeneration after anterior cervical discectomy and fusion with titanium cylindrical cages. Acta Neurochir (Wien). 2009;151(4):303–9.
  23. Liu JT, Chen SY, Su CH, Yang TH. RADIOGRAPHIC OUTCOMES of ANTERIOR CERVICAL DISCECTOMY and FUSION SURGERY by USING CUSHIONED TITANIUM CAGE. J Musculoskelet Res. 2020;23(2):1–7.
  24. Lee JH, Jeon DW, Lee SJ, Chang BS, Lee CK. Fusion rates and subsidence of morselized local bone grafted in titanium cages in posterior lumbar interbody fusion using quantitative three-dimensional computed tomography scans. Spine (Phila Pa 1976). 2010;35(15):1460–5.
  25. Hahn BD, Park DS, Choi JJ, Ryu J, Yoon WH, Choi JH, et al. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery. Appl Surf Sci [Internet]. 2013;283:6–11. Available from: http://dx.doi.org/10.1016/j.apsusc.2013.05.073
  26. Han CM, Lee EJ, Kim HE, Koh YH, Kim KN, Ha Y, et al. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials [Internet]. 2010;31(13):3465–70. Available from: http://dx.doi.org/10.1016/j.biomaterials.2009.12.030
  27. Hoppe S, Albers CE, Elfiky T, Deml MC, Milavec H, Bigdon SF, et al. First results of a new vacuum plasma sprayed (VPS) titanium-coated carbon/PEEK composite cage for lumbar interbody fusion. J Funct Biomater. 2018;9(1):1–10.
  28. Manabe H, Sakai T, Morimoto M, Tezuka F, Yamashita K, Takata Y, et al. Radiological outcomes of posterior lumbar interbody fusion using a titanium-coated PEEK cage. J Med Investig. 2019;66(1.2):119–22.
  29. Li P, Jiang W, Yan J, Hu K, Han Z, Wang B, et al. A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res A. 2019;107(7):1386–92.
  30. Krafft PR, Osburn B, Vivas AC, Rao G, Alikhani P. Novel titanium cages for minimally invasive lateral lumbar interbody fusion: First assessment of subsidence. Spine Surg Relat Res. 2020;4(2):171–7.
  31. Liebsch C, Aleinikov V, Kerimbayev T, Akshulakov S, Kocak T, Vogt M, et al. In vitro comparison of personalized 3D printed versus standard expandable titanium vertebral body replacement implants in the mid-thoracic spine using entire rib cage specimens. Clin Biomech [Internet]. 2020;78(February):105070. Available from: https://doi.org/10.1016/j.clinbiomech.2020.105070
  32. Lee DY, Park YJ, Song SY, Jeong ST, Kim DH. Risk factors for posterior cage migration after lumbar interbody fusion surgery. Asian Spine J. 2018;12(1):59–68.
  33. Reid JJ, Johnson JS, Wang JC. Challenges to bone formation in spinal fusion. J Biomech [Internet]. 2011;44(2):213–20. Available from: http://dx.doi.org/10.1016/j.jbiomech.2010.10.021
  34. https://www.jnjmedicaldevices.com/.
  35. https://www.stryker.com/.
  36. https://www.icotec-medical.com/home.html/.
  37. https://www.ulrichmedical.de /.
  38. https://www.medtronic.com/.
  39. https://www.zimmerbiomet.com/.
  40. Wrangel C Von, Karakoyun A, Buchholz KM, Süss O, Kombos T, Woitzik J, et al. Fusion Rates of Intervertebral Polyetheretherketone and Titanium Cages without Bone Grafting in Posterior Interbody Lumbar Fusion Surgery for Degenerative Lumbar Instability. J Neurol Surgery, Part A Cent Eur Neurosurg. 2017;78(6):556–60.
  41. Hasegawa T, Ushirozako H, Shigeto E, Ohba T, Oba H, Mukaiyama K, et al. The Titanium-coated PEEK Cage Maintains Better Bone Fusion with the Endplate Than the PEEK Cage 6 Months after PLIF Surgery: A Multicenter, Prospective, Randomized Study. Spine (Phila Pa 1976). 2020;45(15):E892–902.
  42. Rickert M, Fleege C, Tarhan T, Schreiner S, Makowski MR, Rauschmann M, et al. Transforaminal lumbar interbody fusion using polyetheretherketone oblique cages with and without a titanium coating. Bone Jt J. 2017;99B(10):1366–72.
  43. Chen Y, Wang X, Lu X, Yang L, Yang H, Yuan W, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: A prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22(7):1539–46.
  44. Nemoto O, Asazuma T, Yato Y, Imabayashi H, Yasuoka H, Fujikawa A. Comparison of fusion rates following transforaminal lumbar interbody fusion using polyetheretherketone cages or titanium cages with transpedicular instrumentation. Eur Spine J. 2014;23(10):2150–5.
  45. Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, et al. Efficacy of anterior cervical fusion: Comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci [Internet]. 2008;15(11):1240–5. Available from: http://dx.doi.org/10.1016/j.jocn.2007.05.016
  46. Campbell PG, Cavanaugh DA, Nunley P, Utter PA, Kerr E, Wadhwa R, et al. PEEK versus titanium cages in lateral lumbar interbody fusion: A comparative analysis of subsidence. Neurosurg Focus. 2020;49(3):1–9.
  47. Kashii M, Kitaguchi K, Makino T, Kaito T. Comparison in the same intervertebral space between titanium-coated and uncoated PEEK cages in lumbar interbody fusion surgery. J Orthop Sci [Internet]. 2020;25(4):565–70. Available from: https://doi.org/10.1016/j.jos.2019.07.004
  48. Christensen FB, Laursen M, Gelineck J, Eiskjær SP, Thomsen K, Bünger CE. Interobserver and Intraobserver Agreement of Radiograph Interpretation With and Without Pedicle Screw Implants. Spine (Phila Pa 1976). 2001;26(5):538–43.
  49. Cuzzocrea F, Ivone A, Jannelli E, Fioruzzi A, Ferranti E, Vanelli R, et al. PEEK versus metal cages in posterior lumbar interbody fusion: a clinical and radiological comparative study. Musculoskelet Surg [Internet]. 2019;103(3):237–41. Available from: https://doi.org/10.1007/s12306-018-0580-6
  50. Sakaura H, Ohnishi A, Yamagishi A, Ohwada T. Early fusion status after posterior lumbar interbody fusion with cortical bone trajectory screw fixation: A comparison of titanium- coated polyetheretherketone cages and carbon polyetheretherketone cages. Asian Spine J. 2019;13(2):248–53.
  51. Vazifehdan F, Karantzoulis VG, Igoumenou VG. Sagittal alignment assessment after short-segment lumbar fusion for degenerative disc disease. Int Orthop. 2019;43(4):891–8.
  52. Yang MY, Chang HH, Chao SC. Clinical and radiologic outcomes of two types of cages used in the treatment of degenerative lumbar diseases: Novel titanium cages versus peek cages. J Musculoskelet Res. 2020 Aug 15;
  53. Schnake KJ, Fleiter N, Hoffmann C, Pingel A, Scholz M, Langheinrich A, et al. PLIF surgery with titanium-coated PEEK or uncoated PEEK cages: a prospective randomised clinical and radiological study. Eur Spine J [Internet]. 2020;(0123456789). Available from: https://doi.org/10.1007/s00586-020-06642-x
  54. Marchi L, Abdala N, Oliveira L, Amaral R, Coutinho E, Pimenta L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J Neurosurg Spine. 2013;19(1):110–8.
  55. Kurtz SM, Lau E, Ong KL, Carreon L, Watson H, Albert T, et al. Infection risk for primary and revision instrumented lumbar spine fusion in the Medicare population: Clinical article. J Neurosurg Spine. 2012;17(4):342–7.
  56. Saavedra-Pozo FM, Deusdara RAM, Benzel EC. Adjacent segment disease perspective and review of the literature. Ochsner J. 2014;14(1):78–83.
  57. Burnard JL, Parr WCH, Choy WJ, Walsh WR, Mobbs RJ. 3D-printed spine surgery implants: a systematic review of the efficacy and clinical safety profile of patient-specific and off-the-shelf devices. Eur Spine J [Internet]. 2020;29(6):1248–60. Available from: https://doi.org/10.1007/s00586-019-06236-2