نویسندگان

دانشگاه صنعتی اصفهان

چکیده

باتوجه به وسعت معلولیت ناشی از آسیب‌های طناب نخاعی و افزایش روزافزون مبتلایان به آن، تلاش‌های زیادی برای ترمیم این ضایعه انجام شده‌است. آسیب‌های طناب نخاعی به دو دسته‌ ضربه‌ای و غیرضربه‎ای تقسیم می‌شوند که البته بیشتر آسیب‌های رخ داده در جامعه از نوع ضربه‌ای است. میزان وقوع سالانه این آسیب بین 40-15 مورد به ازای هریک میلیون نفر در سراسر دنیا تخمین زده می‌شود. باتوجه به وسعت این اتفاق لزوم بررسی هرچه بیشتر آسیب‌های نخاعی به‌ویژه آسیب‌های ضربه‌ای بیشتر حس می‌شود. به‌دلیل مشکلات و محدودیت‌های عملی، اخلاقی و همچنین هزینه هنگفت انجام مطالعات تجربی بر روی نخاع زنده و اجساد انسانی، استفاده از مدل‌سازی به روش المان محدود ابزار قوی و مکملی برای بررسی بیومکانیک نخاع است. این روش قادر به پیش‌بینی چگونگی آسیب‌های نخاعی در بارگذاری‌های متفاوت بوده و می‌تواند به صورت تئوری میزان کرنش طناب نخاعی و حد بحرانی برای آسیب‎دیدگی‌های طناب نخاعی را تعیین ‌کند. این نوع پیش‌بینی‎های نخاعی می‌تواند در نهایت نقش مهمی در ترمیم این ضایعات و بهبودی بیماران ایفا کند. در این مطالعه سعی شده ‌است با بررسی مطالعات صورت گرفته روی نخاع انسان، روش‌های مختلف مدل‌سازی آن ارائه شده و جنبه‌های مختلف آن ازقبیل تعیین خواص، نحوه مدل‌سازی اجزا محدود و چگونگی بارگذاری و در نهایت چگونگی آسیب‌پذیری طناب نخاعی بررسی شده و مورد مقایسه قرار گیرد.

<span lang="AR-SA" style="font-family: " b="" nazanin";="" font-size:="" 10pt;="" mso-ascii-font-family:="" "times="" new="" roman";="" mso-hansi-font-family:="" roman";"="">

کلیدواژه‌ها

عنوان مقاله [English]

Review of studies on Mechanical Performance of Spinal Cord in Traumatic Injuries

نویسندگان [English]

  • Maede Mousavi
  • Saeed Ziaei-Rad
  • Reza Tikani

چکیده [English]

Considering the extent of the disability caused by spinal cord injury and the increasing incidence of it, many attempts have been made to understand how this lesion is repaired. Most of the spinal cord injuries are traumatic injuries. The annual incidence of this damage is estimated between 15-40 cases per million people worldwide. Considering the extent of this incident, the need for study of the effects of spinal cord injuries, in particular, in traumatic injuries, is necessary. Due to the ethical and practical difficulties and limitations, as well as the high cost of performing empirical studies on the living and corpse, the use of finite element modeling is a powerful and complementary tool for the study of spinal biomechanics. This method is able to predict how the spinal cord gets injured in different loads and whether one can determine the amount of spinal cord strain and the critical level for spinal cord injuries. Such prediction can play an important role in treating these lesions and improving patients. This study, reviews the previous studies about finite element analysis on the spinal cord. Different aspects of finite element model include methods of its modeling, determination of mechanical properties, loading injury determination of spinal cord have been presented. The results of these studies are compared in order to provide accurate model in future.

کلیدواژه‌ها [English]

  • Keywords: Spinal Cord Injuries
  • spinal cord
  • finite element analysis
1.McKinley WO, Seel RT, Gadi RK, Tewksbury MA. Nontraumatic vs. traumatic spinal cord injury: a rehabilitation outcome comparison. Am J Phys Med Rehabil. 2001;80:693-9; quiz 700, 1.
2.LeVeau BF. Biomechanics of human motion: basics and beyond for the health professions. Thorofare, NJ, SLACK Incorporated, 2011.
3.Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3:184-201.
4.Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: A preliminary report. JAMA. 1911;LVII:878-80.
5.Hung TK, Chang GL, Lin HS, Walter FR, Bunegin L. Stress-strain relationship of the spinal cord of anesthetized cats. J Biomech. 1981;14:269-76.
6.Hung TK, Lin HS, Bunegin L, Albin MS. Mechanical and neurological response of cat spinal cord under static loading. Surg Neurol. 1982;17:213-7.
7.Hung TK, Chang GL. Biomechanical and neurological response of the spinal cord of a puppy to uniaxial tension. J Biomech Eng. 1981;103:43-7.
8.Maiman DJ, Coats J, Myklebust JB. Cord/spine motion in experimental spinal cord injury. J Spinal Disord. 1989;2:14-9.
9.Jones CF, Kroeker SG, Cripton PA, Hall RM. The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord. Spine (Phila Pa 1976). 2008;33:E580-8.
10.Ozawa H, Matsumoto T, Ohashi T, Sato M, Kokubun S. Mechanical properties and function of the spinal pia mater. J Neurosurg Spine. 2004;1:122-7.
11.Fiford RJ, Bilston LE, Waite P, Lu J. A vertebral dislocation model of spinal cord injury in rats. J Neurotrauma. 2004;21:451-8.
12.Fiford RJ, Bilston LE. The mechanical properties of rat spinal cord in vitro. J Biomech. 2005;38:1509-15.
13.Choo AM, Liu J, Liu Z, Dvorak M, Tetzlaff W, Oxland TR. Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations. J Neurosci Methods. 2009;181:6-17.
14.Clarke EC, Cheng S, Bilston LE. The mechanical properties of neonatal rat spinal cord in vitro, and comparisons with adult. J Biomech. 2009;42:1397-402.
15.Oakland RJ, Hall RM, Wilcox RK, Barton DC. The biomechanical response of spinal cord tissue to uniaxial loading. Proc Inst Mech Eng H. 2006;220:489-92.
16.Polak K, Czyz M, Scigala K, Jarmundowicz W, Bedzinski R. Biomechanical characteristics of the porcine denticulate ligament in different vertebral levels of the cervical spine-preliminary results of an experimental study. J Mech Behav Biomed Mater. 2014;34:165-70.
17.Ichihara K, Taguchi T, Shimada Y, Sakuramoto I, Kawano S, Kawai S. Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J Neurotrauma. 2001;18:361-7.
18.Bilston LE, Thibault LE. The mechanical properties of the human cervical spinal cord in vitro. Ann Biomed Eng. 1996;24:67-74.
19.Yuan Q, Dougherty L, Margulies SS. In vivo human cervical spinal cord deformation and displacement in flexion. Spine (Phila Pa 1976). 1998;23:1677-83.
20.Ko HY, Park JH, Shin YB, Baek SY. Gross quantitative measurements of spinal cord segments in human. Spinal Cord. 2004;42:35-40.
21.Karimi A, Shojaei A, Tehrani P. Mechanical properties of the human spinal cord under the compressive loading. J Chem Neuroanat. 2017;86:15-8.
22.Bilston LE. Finite element analysis of some cervical spinal cord injury modes. Proceedings of the 1998 International Ircobi Conference on the Biomechanics of Impact; 1998; Goeteborg , Sweden: p. 365-76.
23.Galford JE, McElhaney JH. A viscoelastic study of scalp, brain, and dura. J Biomech. 1970;3:211-21.
24.Bilston LE, Thibault LE. Biomechanics of cervical spinal cord injury in flexion and extension: A physical model to estimate spinal cord deformations. International Journal of Crashworthiness. 1997;2:207-18.
25.Scifert J, Totoribe K, Goel V, Huntzinger J. Spinal cord mechanics during flexion and extension of the cervical spine: a finite element study. Pain Physician. 2002;5:394-400.
26.McDonald JW, Sadowsky C. Spinal-cord injury. Lancet. 2002;359:417-25.
27.Van Noort R, Black MM, Martin TR, Meanley S. A study of the uniaxial mechanical properties of human dura mater preserved in glycerol. Biomaterials. 1981;2:41-5.
28.Moroney SP, Schultz AB, Miller JA, Andersson GB. Load-displacement properties of lower cervical spine motion segments. J Biomech. 1988;21:769-79.
29.Greaves CY, Gadala MS, Oxland TR. A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms. Ann Biomed Eng. 2008;36:396-405.
30.Hung TK, Lin HS, Albin MS, Bunegin L, Jannetta PJ. The standardization of experimental impact injury to the spinal cord. Surg Neurol. 1979;11:470-7.
31.Czyz M, Scigala K, Jarmundowicz W, Beidzinski R. The biomechanical analysis of the traumatic cervical spinal cord injury using finite element approach. Acta Bioeng Biomech. 2008;10:43-54.
32.Ben-Hatira F, Saidane K, Mrabet A. A finite element modeling of the human lumbar unit including the spinal cord. J Biomed Sci Eng. 2012;5(3):146-52.
33.Yan YB, Qi W, Wu ZX, Qiu TX, Teo EC, Lei W. Finite element study of the mechanical response in spinal cord during the thoracolumbar burst fracture. PLoS One. 2012;7:e41397.
34.Fradet L, Arnoux P-J, Callot V, Petit Y. Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space. Advances in Mechanical Engineering. 2016;8:1687814016664703.
35.Czyz M, Tykocki T, Miękisiak G, Ścigała K, Bedzinski R, Jarmundowicz W. Critical values of mechanical stress and strain during traumatic cervical spinal cord injury: Clinical study with the use of Finite Element Modelling. J Biomed Graph Comput. 2016;6(2):22-30.‏
36.Duan S, Zhu ZQ, Wang KF, Liu CJ, Xu S, Xia WW, et al. Biomechanical behaviors of cervical spinal cord injury related to various bone fragment impact velocities: a finite element study. Zhonghua Yi Xue Za Zhi. 2018;98:837-41. (Article in Chinese)
37.Biglari H, Razaghi R, Ebrahimi S, Karimi A. A computational dynamic finite element simulation of the thoracic vertebrae under blunt loading: spinal cord injury. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019;41:84.‏
38.Russell CM. A nonlinear finite element model of the rat cervical spine: validation and correlation with histological measures of spinal cord injury [dissertation]. Vancouver, BC Canada: University of British Columbia; 2012.
39.Maikos JT, Qian Z, Metaxas D, Shreiber DI. Finite element analysis of spinal cord injury in the rat. J Neurotrauma. 2008;25:795-816.
40.Hunter B. Spinal cord modelling for understanding and prevention of injury [dissertation]. Perth, Australia: University of Western Australia; 2016. 
41.Sparrey CJ, Salegio EA, Camisa W, Tam H, Beattie MS, Bresnahan JC. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates. J Neurotrauma. 2016;33:1136-49.